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Abstract. We compute the pole mass of the gluon in QCD from the local composite operator formalism
at two loops in the MS renormalization scheme. For the Yang-Mills theory an estimate of the mass at two
loops is 2.13ΛMS.

1 Introduction

There has been recent interest in understanding the role
the dimension two gauge invariant gluon mass operator
plays in the vacuum structure of Yang-Mills theory and
QCD. For instance, see [1–13] and references therein. As
was pointed out in [14–17] the perturbative vacuum one or-
dinarily uses for high energy computations is not stable and
it has been suggested that in the true vacuum, various op-
erators condense developing non-zero vacuum expectation
values. Whilst the operator product expansion and QCD
sum rules are usually centred on the gauge invariant oper-
ators

(
Ga

µν

)2 and ψ̄ψ, whereGa
µν is the gluon field strength

and ψ is the quark field, recent work considered the lower
dimension operator 1

2A
a 2
µ in the Landau gauge, [3, 8–13],

and various generalizations of it. For instance, there one
can construct a non-local gauge invariant dimension two
operator which truncates to 1

2A
a 2
µ in the Landau gauge.

An example of the role such an operator can play in the in-
frared structure has been examined in [18] where a massive
gauge invariant QCD Lagrangian was studied in connec-
tion with vortex solutions. As 1

2A
a 2
µ has the dimensions of

a mass operator, it has been the subject of investigating
the issue of whether the gluon can develop a mass dynam-
ically. Indeed in the early work of Curci and Ferrari, [19],
an extension of this operator, which was on-shell BRST in-
variant, was included in the usual QCD Lagrangian. More
recently another approach, known as the local composite
operator (LCO) method, has been developed which avoids
the ad hoc inclusion of a gluon mass term [8–10]. Instead
the QCD Lagrangian is modified to introduce an extra
scalar field, σ, coupled to 1

2A
a 2
µ and with this one can

compute the effective potential of the scalar field. It tran-
spires that due to the development of a non-zero vacuum
expectation value for σ the gluon gains a non-zero mass in
a vacuum which does not correspond to the (unstable) per-
turbative one. By contrast, applying the same formalism
to QED, [10], the perturbative vacuum is stable and whilst

there is another extremum where σ has a non-zero vacuum
expectation value, it corresponds to an unstable point.

Within this formalism one can estimate the size of an
effective gluon mass at one and two loops. In the Yang-
Mills theory it is of the order of 2ΛMS and is stable to the
higher order corrections. Whilst this is roughly consistent
with other estimates of a gluon mass from a wide range
of methods (which are succinctly summarized in Table 15
of Field’s article, [20]) the LCO estimates suffer several
shortcomings. One of these is that the effective gluon mass
used in [8] was the tree object and whilst the effective po-
tential does have the quantum corrections no account of
the dressings of the tree quantity were included. Further,
whilst all the gluon estimates are of a similar range, it is
not clear to what extent the same mass quantity is being
measured. For instance, in the quark sector of QCD the
quark masses are all measured and compared to the same
benchmark, which is the running mass at the scale 2GeV.
This is irrespective of whether the pole mass of the quark
was determined or, say, the running mass at another scale
prior to using the (four loop) quark mass anomalous dimen-
sion to run the mass to the standard reference scale. For the
same problem for a gluon mass, the anomalous dimension
of the 1

2A
a 2
µ gluon mass operator in the Landau gauge is

now available at four loops, [21], extending the two, [22],
and three loop, [23], results which are all in the MS scheme.
Remarkably the operator anomalous dimension is the sum
of the gluon and ghost anomalous dimensions in the Lan-
dau gauge, [23,24]. To complete the analysis for any future
gluon mass computations one requires, for instance, the
relation between the running and pole mass of the gluon.
This was initially addressed for the LCO formalism in [25]
where the one loop relation between these quantities was
given in the MS scheme where the computation extended
the one loop calculation of [26] for the Curci-Ferrari La-
grangian (with Nf = 0) itself rather than the LCO one.
Moreover, an estimate of the pole mass was provided, [25],
by converting the effective potential of the classical gluon
mass of the LCO Lagrangian into a potential for the gluon
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pole mass. Remarkably upon extremization and solution of
the resultant equation, a mass estimate emerged in QCD
which was independent of the renormalization scale. For
the Yang-Mills theory this corresponded to 2.10ΛMS, [25],
though the values forNf = 2 and 3 were significantly lower.
Given the interest in gluon masses and the absence of rela-
tions between the various mass quantities, it is the purpose
of this article to extend [25] to two loops by computing the
gluon pole mass in the LCO formalism in the MS scheme
in the Landau gauge. As a by-product we will be to de-
duce the same quantity in the Curci-Ferrari Lagrangian
to extend the Yang-Mills result of [26]. Another motiva-
tion for such an analysis, aside from determining whether
the two loop corrections significantly alter the one loop
estimates, is to ascertain whether the two loop result us-
ing the minimization criterion of [25] retains the one loop
renormalization scale independence. Given the fact that by
analogy, except for the β-function, the MS anomalous di-
mensions are renormalization scheme independent at only
one loop, it would be surprising if a two loop pole mass
estimate remained renormalization scale independent.

The article is organised as follows. In Sect. 2, we re-
view the background to the problem including the neces-
sary points of the LCO formalism before discussing the
construction of the two loop gluon pole mass in Sect. 3.
Equipped with this we perform the analysis to produce
a mass estimate in Sect. 4 before concluding with various
estimates in Sect. 5.

2 LCO formalism

We begin by reviewing the key ingredients of the LCO
formalism, [8], we will require. First, we define the QCD
Lagrangian in an arbitrary covariant gauge as

LQCD = − 1
4
Ga

µνG
a µν − 1

2α
(∂µAa

µ)2 − c̄a∂µDµc
a

+ iψ̄iI /DψiI (2.1)

where α is the gauge fixing parameter,Aa
µ is the gluon field,

ca and c̄a are the ghost and anti-ghost fields, ψiI is the
quark field and the various indices range over 1 ≤ a ≤ NA,
1 ≤ I ≤ NF and 1 ≤ i ≤ Nf where NF and NA are the
dimensions of the fundamental and adjoint representations
respectively and Nf is the number of quarks. To construct
the LCO Lagrangian from LQCD we introduce the path
integral W [J ] defined by, [8],

e−W [J] =
∫

DAµ
oDψoDψ̄oDcoDc̄o

× exp
[∫

ddx
(
Lo − 1

2 JoA
a 2
o µ + 1

2 ξoJ
2
o
)]

(2.2)

where J is the source coupled to the local composite opera-
tor 1

2A
a 2
µ in the Landau gauge and the subscript o denotes

bare quantities. To retain renormalizability of the action
including the source as well as a homogeneous renormal-
ization group equation an additional term has been intro-
duced. For instance, the term quadratic in J is necessary

since the vacuum energy is divergent as can easily be seen
by power counting. This term is coupled in via a parameter
ξ and its associated counterterm δξ is included when the
action is converted to renormalized parameters giving

e−W [J] =
∫

DAµDψDψ̄DcDc̄ (2.3)

× exp
[∫

ddx
(
L− 1

2ZmJA
a 2
µ + 1

2 (ξ + δξ)J2)]
where Zm is the gluon mass renormalization constant. It
transpires, [8], that in the LCO formalism one can com-
pute the explicit form of ξ by ensuring that W [J ] does
indeed satisfy a homogeneous renormalization group equa-
tion. Consequently since the coupling constant, g, runs in
such an equation ξ is constrained to satisfy a differential
equation dependent on the β-function and anomalous di-
mension of the gluon mass operator, 1

2A
a 2
µ . This equation

can be solved in a coupling constant expansion. As we will
require the explicit form here we note that in QCD we
have, [8, 10],

1
g2ξ(g)

=

[
(13CA − 8TFNf )

9NA

+
(
2685464C3

ATFNf − 1391845C4
A − 213408C2

ACFTFNf

− 1901760C2
AT

2
FN

2
f + 221184CACFT

2
FN

2
f

+ 584192CAN
3

f T
3
F − 55296CFT

3
FN

3
f − 65536T 4

FN
4

f

)
× g2

5184π2NA(35CA − 16TFNf )(19CA − 8TFNf )

+
((

62228252520C6
ANfTF − 8324745975C7

A

− 42525100800C5
ACFNfTF − 123805256256C5

AN
2

f T
2
F

+ 105262940160C4
ACFN

2
f T

2
F

+ 112398515712C4
AN

3
f T

3
F

− 103719518208C3
ACFN

3
f T

3
F − 52888043520C3

AN
4

f T
4
F

+ 50866421760C2
ACFN

4
f T

4
F + 12606898176C2

AN
5

f T
5
F

− 12419334144CACFN
5

f T
5
F − 1207959552CAN

6
f T

6
F

+ 1207959552CFN
6

f T
6
F

)
ζ(3)

− 13223737800C7
A + 5886241060C6

ANfTF

+ 52585806000C5
ACFNfTF + 41351916768C5

AN
2

f T
2
F

+ 522849600C4
AC

2
FNfTF − 130596636288C4

ACFN
2

f T
2
F

− 67857620736C4
AN

3
f T

3
F − 1286267904C3

AC
2
FN

2
f T

2
F

+ 128750638080C3
ACFN

3
f T

3
F + 46700324864C3

AN
4

f T
4
F

+ 1180127232C2
AC

2
FN

3
f T

3
F − 63001780224C2

ACFN
4

f T
4
F

− 16782753792C2
AN

5
f T

5
F − 475987968CAC

2
FN

4
f T

4
F
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+ 15308685312CACFN
5

f T
5
F + 3106406400CAN

6
f T

6
F

+ 70778880C2
FN

5
f T

5
F − 1478492160CFN

6
f T

6
F

− 234881024N7
f T

7
F

)
× g4

995328π4NA(35CA − 16TFNf )2(19CA − 8TFNf )2

]

+O
(
g6) (2.4)

where Tr
(
T aT b

)
= TF δ

ab, T a is the group generator, CA

and CF are the usual colour group Casimirs and ζ(z) is the
Riemann zeta function. Consequently one uses a Hubbard-
Stratanovich transformation to rewrite the exponential in
the path integral of W [J ]. This introduces the additional
scalar field σ and gives a generating functional where the
source J now couples linearly to a field as opposed to a
composite operator. Thus, [8],

e−W [J] =
∫

DAµDψDψ̄DcDc̄Dσ

× exp
[∫

ddx

(
Lσ − σJ

g

)]
(2.5)

where Lσ is the LCO Lagrangian and is given by, [8],

Lσ = − 1
4
Ga

µνG
a µν − 1

2α
(∂µAa

µ)2 − c̄a∂µDµc
a

+iψ̄iI /DψiI − σ2

2g2ξ(g)Zξ
+

Zm

2gξ(g)Zξ
σAa

µA
a µ

− Z2
m

8ξ(g)Zξ

(
Aa

µA
a µ
)2 (2.6)

where the first few terms of ξ(g) are given by (2.4).
Using (2.6) the effective potential V (σ) was constructed

by standard methods at two loops in the MS scheme, [8–10].
The divergences in the vacuum energy are removed by
straightforward renormalization since the Lagrangian, Lσ,
retains the renormalizability property. As the two loop
effective potential will be required later we recall its explicit
form is

V (σ) =
9NA

2
λ1σ

′2

+
[

3
64

ln
(
gσ′

µ2

)

+ CA

(
− 351

8
CFλ1λ2 +

351
16

CFλ1λ3 − 249
128

λ2 +
27
64
λ3

)

+ C2
A

(
− 81

16
λ1λ2 +

81
32
λ1λ3

)

+
(

− 13
128

− 207
32

CFλ2 +
117
32

CFλ3

)]
g2NAσ

′2

π2

+

[
CA

(
− 593

16384
− 255

16
CFλ2 +

36649
4096

CFλ3

− 1053
64

C2
Fλ1λ2 +

1053
128

C2
Fλ1λ3 − 5409

1024
C2

Fλ
2
2

+
1053
1024

C2
Fλ

2
3 +

891
8192

s2 − 1
4096

ζ(2) − 3
64
ζ(3)

+
585
16

ζ(3)CFλ2 − 4881
256

ζ(3)CFλ3

)

+ C2
A

(
− 11583

128
CFλ1λ2 +

11583
256

CFλ1λ3

+
72801
2048

CFλ
2
2 +

11583
2048

CFλ
2
3 +

3159
128

C2
Fλ1λ

2
2

+
3159
512

C2
Fλ1λ

2
3 +

372015
16384

λ2 − 189295
16384

λ3

+
3159
16

ζ(3)CFλ1λ2 − 3159
32

ζ(3)CFλ1λ3

− 1053
16

ζ(3)CFλ
2
2 − 3159

256
ζ(3)CFλ

2
3

− 6885
256

ζ(3)λ2 +
116115
8192

ζ(3)λ3

)

+ C3
A

(
34749
256

CFλ1λ
2
2 +

34749
1024

CFλ1λ
2
3 +

64071
512

λ1λ2

− 64071
1024

λ1λ3 − 694449
16384

λ2
2 − 64071

8192
λ2

3

− 9477
32

ζ(3)CFλ1λ
2
2 − 9477

128
ζ(3)CFλ1λ

2
3

− 37179
256

ζ(3)λ1λ2 +
37179
512

ζ(3)λ1λ3

+
12393
256

ζ(3)λ2
2 +

37179
4096

ζ(3)λ2
3

)

+ C4
A

(
− 192213

1024
λ1λ

2
2 − 192213

4096
λ1λ

2
3

+
111537

512
ζ(3)λ1λ

2
2 +

111537
2048

ζ(3)λ1λ
2
3

)

+
(

− 247
4096

CF +
1185
1024

C2
Fλ2 − 615

1024
C2

Fλ3

+
1

128
ζ(2)NfTF +

3
64
ζ(3)CF

)

+
[
CA

(
+

75
4096

− 315
1024

CFλ2

)

+ C2
A

(
+

315
4096

λ2

)
+

9
1024

CF

]
ln
(
gσ′

µ2

)

− 9
4096

CA

(
ln
(
gσ′

µ2

))2
]
g4NAσ

′2

π4 +O(g6) (2.7)

where

λ1 =
[
13CA − 8TFNf

]−1
, λ2 =

[
35CA − 16TFNf

]−1
,

λ3 =
[
19CA − 8TFNf

]−1 (2.8)
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and µ is the renormalization scale which incorporates the
usual factor of 4πe−γ into the MS renormalization scale
where γ is theEuler-Mascheroni constant.MinimizingV (σ)
with respect to the quantity σ one discovers that the clas-
sical perturbative vacuum at 〈σ〉 = 0 is unstable and that
there is a stable vacuum for a value of 〈σ〉 �= 0. Estimates
for the value of 〈σ〉 were given in [8] by assuming that

dV (σ)
dσ

= 0 (2.9)

and then choosing the renormalization scale µ to be such
that there were no logarithms in the equation relating the
coupling constant to the value of 〈σ〉. Using the renormal-
ization group properties relating the coupling constant to
the scale µ and hence the fundamental scale ΛQCD in the
MS scheme, the estimate for 〈σ〉 was obtained which was
relatively stable to two loop corrections. In [8] a subsequent
estimate was deduced for an effective gluon mass. This will
be illustrated in more detail in a later section.

However, as indicated earlier this was essentially the
classical or bare gluon mass in the region of the stable
minimum of the effective potential for σ. A more appro-
priate quantity to examine would be a gluon mass where
some account of the quantum corrections were included.
In this article we will use the pole mass of the gluon as con-
structed from the LCO Lagrangian at two loops building
on the previous one loop analysis of [25].

3 Two loop gluon pole mass

In this section we construct the relation between the run-
ning gluon mass of the LCO Lagrangian and the pole mass
which is defined to be the pole of the one particle irre-
ducible gluon polarization tensor. In [27] the simpler two
dimensional Gross-Neveu model was studied and the rela-
tion between the analogous quantities was determined. The
final mass estimates compared favourably with the known
exact mass gap. Whilst we will use [27] as a basis for the
QCD computation there are significant differences aside
from the space-time dimensionality. The first is that Lσ

has more interactions and basic fields as well as the gauge
property. Second, and partly as a consequence of the pre-
vious point, it is not possible to fully construct the gluon
2-point function for all momenta and then deduce the pole
of the propagator. This is also due to the fact that not all
relevant basic 2-point two loop Feynman diagrams can be
written in terms of closed known analytic functions for all
values of the momenta. To circumvent these difficulties we
have followed the strategy and algorithm of a similar model
in the context of the weak sector of the full standard model.
Our approach is based on the series of articles [28–31] which
applies the On-Shell algorithm to the relation of the vec-
tor gauge boson poles masses in MS to their bare values.
This package, [28,29], is designed to determine the value of
two loop Feynman diagrams with massless propagators in
addition to a propagator with a mass which is the on-shell
value whose pole mass one is interested in. It uses dimen-
sional regularization in d = 4 − 2ε dimensions. One can

extend the approach of [28,29] to integrals with more than
one scale by expanding in an appropriate ratio of masses
which is assumed to be small. In our case this complication
does not occur.

The On-Shell package, [28,29], is written in the sym-
bolicmanipulation languageForm, [32], and forLσ wehave
generated the relevant one and two loop one particle irre-
ducible Feynman diagrams using the Qgraf package, [33].
This is converted into a Form readable format before ap-
plying the On-Shell procedure to determine the value of
each individual diagram when the external momentum is
set to its on-shell value. For the LCO Lagrangian we are
interested in there are 5 one loop diagrams and 39 two loop
diagrams to evaluate.

The remaining issue is to construct the pole mass itself
from the integral contributing to the gluon 2-point polar-
ization. If we define the transverse part of the correction
to the polarization tensor by

Πµν(p) = Π(p2,m2)
[
ηµν − pµpν

p2

]
(3.1)

where p is the external momentum then the pole mass is
defined to be that value of p2 which is the solution to, [30],

p2 −m2 −Π
(
p2,m2) = 0 . (3.2)

If we write the perturbative expansion of the transverse
part of the polarization tensor as

Π
(
p2,m2) =

∞∑
n=1

Πn

(
p2,m2) g2n (3.3)

then to two loops one can solve the pole mass condition
iteratively to obtain the pole mass, sp, as, [30],

sp = m2 +Π1(m2,m2)g2

+
(
Π2(m2,m2) +Π1(m2,m2)Π ′

1(m
2,m2)

)
g4

+O(g6) (3.4)

where

Π ′
1(m

2,m2) =
∂

∂p2Π1(p2,m2)
∣∣∣∣
p2=m2

(3.5)

and here m2 = m2(µ) is the running mass. The actual
values of Πi(m2,m2) are obtained from the On-Shell
package, [28,29]. In determining the two loop part of (3.4)
from the one loop diagrams, we have expanded the bare
coupling constant and bare mass in terms of the renor-
malized variables before applying the one and two loop
On-Shell routines. As a check that the final expression
we obtain for the pole mass is correct, we note that first
the full 2-point function Π(m2,m2) itself has to be finite
at two loops after renormalization with the usual Landau
gauge renormalization constants, [34–37], and, [8–10,22],

Z−1
ξ = 1 +

(
13
6
CA − 4

3
TFNf

)
g2

16π2ε
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+
[(

1464C2
ATFNf − 1365C3

A − 384CAT
2
FN

2
f

) 1
ε2

+
(
5915C3

A − 6032C2
ATFNf − 1248CACFTFNf

+1472CAT
2
FN

2
f + 768CFT

2
FN

2
f

) 1
ε

]

× g4

6144π4(35CA − 16TFNf )
+O(g6) (3.6)

in the MS scheme. This is useful since it checks that the
expansion of the one loop diagrams has been performed
correctly when the coupling constant and mass are replaced
by their renormalized variables. The quantity Π ′

1(m
2,m2)

is itself clearly finite by simple power counting. Finally,
we arrive at our expression for the two loop MS pole mass
using the LCO Lagrangian which, with sp = m2

LCO, is

m2
LCO =[
1 +

((
287
576

− 3
64

ln
(
m2(µ)
µ2

)
− 11π

√
3

128

)
CA

− 1
9
TFNf

)
g2

π2

+

((
1
8
ζ(3) − 39

256
+

1
128

ln
(
m2(µ)
µ2

))
TFNfCF

+

(
− 2801

55296
+

99
1024

S2 − 647
6912

ln
(
m2(µ)
µ2

)

+
3

512

[
ln
(
m2(µ)
µ2

)]2

+
379
4608

ζ(2)

− 1
8
ζ(3)

)
TFNfCA

+
(

3
32
S2 − 11

3456
+

11
1536

ln
(
m2(µ)
µ2

))

×
√

3TFNfCA

+
(

− 7
432

+
1
54

ln
(
m2(µ)
µ2

)
− 1

72
ζ(2) +

π2

144

)

× T 2
FN

2
f

+
(

3
2048

− 9
2048

ln
(
m2(µ)
µ2

))
CFCA

+
(

− 105
2048

+
315
2048

ln
(
m2(µ)
µ2

))
CFC

2
A[

35CA − 16TFNf

]
+

(
9737
24576

− 3069
8192

S2 +
11461
221184

ln
(
m2(µ)
µ2

)

− 51
8192

[
ln
(
m2(µ)
µ2

)]2

− 59
2304

ζ(2) +
231
8192

ζ(3)

)

× C2
A

+
(

105
8192

− 315
8192

ln
(
m2(µ)
µ2

))
C3

A[
35CA − 16TFNf

]
+
(

− 1413
32768

S2 − 12503
221184

+
77

24576
ln
(
m2(µ)
µ2

))

×
√

3πC2
A

+
17π2

2304
C2

A

)
g4

π4 +O(g6)

]
m2(µ) (3.7)

where S2 = (4
√

3/3) Cl2(π/3) and Cl2(x) is the
Clausen function.

Another check on the symbolic manipulation routines
we have written was to consider the Curci-Ferrari La-
grangian, [19], in the Landau gauge which is effectively
QCD with a gluon mass included by hand. The corre-
sponding Lagrangian is

LmQCD = LQCD + 1
2m

2Aa
µA

a µ − αm2c̄aca (3.8)

where we have included the ghost mass term for complete-
ness. As the one loop pole mass for this theory was given
in [25,26], it does not require much more effort to produce
the two loop MS correction using the same symbolic manip-
ulation programmes. In this case the same Qgraf output
is used but with a null σ vertex and the usual quartic gluon
interaction. The same check that the 2-point function is
finite was satisfied. By contrast to (3.7) we find that the
pole mass for (3.8) is, with sp = m2

CF,

m2
CF =[
1 +

((
313
576

− 35
192

ln
(
m2(µ)
µ2

)
− 11π

√
3

128

)
CA

+
(

1
12

ln
(
m2(µ)
µ2

)
− 5

36

)
TFNf

)
g2

π2

+

((
1
8
ζ(3) − 119

768
+

1
64

ln
(
m2(µ)
µ2

))
TFNfCF

+

(
− 20335

165888
+

297
1024

S2 +
13

13824
ln
(
m2(µ)
µ2

)

+
95

4608

[
ln
(
m2(µ)
µ2

)]2
+

91
1536

ζ(2) − 1
8
ζ(3)

)

× TFNfCA

+
(

3
32
S2 +

11
13824

− 11
2304

ln
(
m2(µ)
µ2

))

×
√

3TFNfCA
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+

(
− 5

648
+

7
432

ln
(
m2(µ)
µ2

)

− 1
144

[
ln
(
m2(µ)
µ2

)]2
+

π2

144

)
T 2

FN
2

f

+

(
163265
331776

− 5643
8192

S2 − 11057
110592

ln
(
m2(µ)
µ2

)

− 875
73728

[
ln
(
m2(µ)
µ2

)]2
− 51

2048
ζ(2)

+
231
8192

ζ(3)

)
C2

A

+
(

− 1413
32768

S2 − 13933
221184

+
1661
73728

ln
(
m2(µ)
µ2

))

×
√

3πC2
A

+
17π2

2304
C2

A

)
g4

π4 +O(g6)

]
m2(µ) . (3.9)

Although the Lagrangian for QCD in the non-linear Curci-
Ferrari gauge formally differs from that for the Landau
gauge in relation to the ghost gluon interaction term for
α = 0, we have checked that the same pole mass emerges
as (3.9) for the usual covariant Landau gauge fixing.

4 Analysis

The next stage of our analysis is to produce an estimate
for the pole mass. In [27] another method of estimating the
Gross-Neveu mass gap was used. This required knowledge
of the full 2-point function as a function of the external
momentum. This approach is not available to us for QCD
since the technology does not exist to compute the gluon 2-
point function exactly as a function of momentum. Instead
we simply extend the argument of [25] to two loops. In [8]
an estimate for an effective gluon mass was obtained by
examining the location of the minimum of V (σ) using (2.9).
The effective gluon mass is essentially the bare mass of Lσ.
It does not take account of quantum corrections. In [25] it
was argued that a more appropriate quantity to estimate
from the effective potential was m2

LCO itself. Specifically
the quantity V eff(m2

LCO) was constructed by inverting the
one loop part of (3.7) to obtainm2(µ) as a function ofm2

LCO
before substituting for m2(µ) using the relation with 〈σ 〉

m2(µ) =
9NA〈σ〉

[13CA − 8TFNf ]gξ(g)
. (4.1)

Thus we find the potential, truncated to one loop, is

V eff(m2
LCO) =[

9
2
λ1 +

(
− 29

128
+

3
64

ln
(
m2

LCO

µ2

)
− 207

32
CFλ2 +

117
32

CFλ3

+ CA

(
− 351

8
CFλ1λ2 +

351
16

CFλ1λ3 − 183
64

λ1

− 249
128

λ2 +
27
64
λ3 +

99
128

π
√

3λ1

)

+ C2
A

(
− 81

16
λ1λ2 +

81
32
λ1λ3

)

+
27
64
CAλ1 ln

(
m2

LCO

µ2

))
g2

π2 +O(g4)
]

× (13CA − 8TFNf )2

81NA
g2ξ2(g)m4

LCO . (4.2)

Using the minimization criterion, [25],

dV eff(m2
LCO)

dm2
LCO

= 0 (4.3)

the following condition

0 =[
9
2
λ1 +

(
− 13

64
+

3
64

ln
(
m2

LCO

µ2

)
− 207

32
CFλ2 +

117
32

CFλ3

+ CA

(
− 351

8
CFλ1λ2 +

351
16

CFλ1λ3 − 339
128

λ1

− 249
128

λ2 +
27
64
λ3 +

99
128

π
√

3λ1

)

+ C2
A

(
− 81

16
λ1λ2 +

81
32
λ1λ3

)

+
27
64
CAλ1 ln

(
m2

LCO

µ2

))
g2

π2 +O(g4)

]

× (13CA − 8TFNf )2

81NA
g2ξ2(g)m2

LCO (4.4)

emerged where we have not included the explicit expansion
of ξ(g). This is because it would introduce an unnecessary
truncation error into the estimates for the pole mass. Ig-
noring the trivial solution of m2

LCO = 0 which corresponds
to the unstable vacuum, the non-trivial condition deter-
mines the pole mass estimate at one loop. To solve this
the renormalization scale µ was parametrically related to
m2

LCO by m2
LCO = sµ2 which leaves a parametric relation

between the running coupling constant and m2
LCO

y = 36CA (16TFNf − 35CA)

×
[(

3465π
√

3 + 4620 ln(s) − 25690
)
C2

A

−864CFTFNf

+
(
19240 − 1584π

√
3 − 3792 ln(s)

)
CATFNf

+ (768 ln(s) − 3328)T 2
FN

2
f

]−1
(4.5)
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where y = CAg
2/(16π2). However, from the one loop β-

function the coupling constant can be related to the fun-
damental scale ΛMS using

g2(µ)
16π2 =

[
β0 ln

[
µ2

Λ2
MS

]]−1

(4.6)

where
β0 =

11
3
CA − 4

3
TFNf . (4.7)

Hence, the µ independent estimate for the pole mass
emerged, [25],

mLCO = Λ
(Nf )
MS

(4.8)

× exp
[
−
((

3465π
√

3 − 25690
)
C2

A − 864CFTFNf

+
(
19240 − 1584π

√
3
)
CATFNf − 3328T 2

FN
2

f

)

× (24 (11CA − 4TFNf ) (35CA − 16TFNf ))−1
]
.

Equipped with the two loop pole mass of (3.7), we now
repeat the above analysis by first invertingm2

LCO to obtain
m2(µ) at two loops as a function of m2

LCO. Substituting
this into (2.7) and truncating at two loops, we find

V eff
(
m2

LCO

)
=

[
9
2
λ1 +

(
− 29

128
− 207

32
CFλ2 +

117
32

CFλ3

+ CA

(
− 351

8
CFλ1λ2 +

351
16

CFλ1λ3 − 183
64

λ1

− 249
128

λ2 +
27
64
λ3 +

99
128

π
√

3λ1

)

+ C2
A

(
− 81

16
λ1λ2 +

81
32
λ1λ3

)
+

3
64

ln
(
m2

LCO

µ2

)

+
27
64
CAλ1 ln

(
m2

LCO

µ2

))
g2

π2

+
(
NfTF

(
− 71

1152
− 1

128
ζ(2) +

1
128

π2
)

+ CFCA

(
+

567
256

λ1 − 23067
2048

λ2 +
27133
4096

λ3

− 117
64

ζ(3)λ1 +
585
16

ζ(3)λ2 − 4881
256

ζ(3)λ3

)

+ CFCAπ

(
− 2277

2048

√
3λ2 +

1287
2048

√
3λ3

)

+ CFC
2
A

(
− 127287

2048
λ1λ2 +

16029
512

λ1λ3 +
72801
2048

λ2
2

+
11583
2048

λ2
3 +

3159
16

ζ(3)λ1λ2 − 3159
32

ζ(3)λ1λ3

− 1053
16

ζ(3)λ2
2 − 3159

256
ζ(3)λ2

3

)

+ CFC
2
Aπ

(
− 3861

512

√
3λ1λ2 +

3861
1024

√
3λ1λ3

)

+ CFC
3
A

(
+

34749
256

λ1λ
2
2 +

34749
1024

λ1λ
2
3

− ζ(3)λ1λ
2
2 − 9477

128
ζ(3)λ1λ

2
3

)

+ CF

(
− 1015

4096
+

3
16
ζ(3)

)

+ C2
FCA

(
− 1053

64
λ1λ2 +

1053
128

λ1λ3 − 5409
1024

λ2
2

+
1053
1024

λ2
3

)

+ C2
FC

2
A

(
+

3159
128

λ1λ
2
2 +

3159
512

λ1λ
2
3

)

+ C2
F

(
+

1185
1024

λ2 − 615
1024

λ3

)

+ CA

(
+

9709
73728

+
891
4096

S2 +
137
2048

ζ(2) − 3
16
ζ(3)

)

+ CAπ

(
− 605

12288

√
3 +

27
256

√
3S2

)
+ CAπ

2
(
+

13
1024

)

+ C2
A

(
+

8019
4096

S2λ1 − 19845
16384

λ1 +
389957
16384

λ2

− 193687
16384

λ3 − 2631
4096

ζ(2)λ1 +
12897
8192

ζ(3)λ1

− 6885
256

ζ(3)λ2 +
116115
8192

ζ(3)λ3

)

+ C2
Aπ

(
− 32211

32768

√
3S2λ1 − 1193

8192

√
3λ1 − 2739

8192

√
3λ2

+
297
4096

√
3λ3

)

+ C2
Aπ

2
(

+
2217
32768

λ1

)

+ C3
A

(
+

1050543
8192

λ1λ2 − 32859
512

λ1λ3 − 694449
16384

λ2
2

− 64071
8192

λ2
3 − 37179

256
ζ(3)λ1λ2 +

37179
512

ζ(3)λ1λ3

+
12393
256

ζ(3)λ2
2 +

37179
4096

ζ(3)λ2
3

)

+ C3
Aπ

(
− 891

1024

√
3λ1λ2 +

891
2048

√
3λ1λ3

)

+ C4
A

(
− 192213

1024
λ1λ

2
2 − 192213

4096
λ1λ

2
3
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+
111537

512
ζ(3)λ1λ

2
2 +

111537
2048

ζ(3)λ1λ
2
3

)

+ ln
(
m2

LCO

µ2

)
NfTF

(
+

1
32

)

+ ln
(
m2

LCO

µ2

)
CFCA

(
− 153

2048
λ1 − 117

128
λ2 +

351
1024

λ3

)

+ ln
(
m2

LCO

µ2

)
CFC

2
A

(
− 11259

2048
λ1λ2 +

1053
512

λ1λ3

)

+ ln
(
m2

LCO

µ2

)
CF

(
+

9
512

)

+ ln
(
m2

LCO

µ2

)
CA

(
− 511

4096

)

+ ln
(
m2

LCO

µ2

)
CAπ

(
+

33
2048

√
3
)

+ ln
(
m2

LCO

µ2

)
C2

A

(
+

657
8192

λ1 − 27
256

λ2 +
81

2048
λ3

)

+ ln
(
m2

LCO

µ2

)
C2

Aπ

(
− 99

4096

√
3λ1

)

+ ln
(
m2

LCO

µ2

)
C3

A

(
− 1053

8192
λ1λ2 +

243
1024

λ1λ3

)

+
(

ln
(
m2

LCO

µ2

))2

CA

(
+

9
1024

))
g4

π4 +O(g6)
]

×

(
13CA − 8TFNf

)2

81NA
g2ξ2(g)m4

LCO (4.9)

where againwehavenot substituted for ξ(g).As this general
expression is rather cumbersome, in order to illustrate the
two loop analysis we concentrate for the moment on the
case of SU(3) with Nf = 0 when we simply have

V eff (m2
LCO

)∣∣Nf =0
SU(3) =[

3
26

+
(

99
√

3π + 132 ln
(
m2

LCO

µ2

)
− 800

)
g2

1664π2

+
(

1038312
√

3π ln
(
m2

LCO

µ2

)
+ 2174607

√
3πS2

− 4831320
√

3π + 640224
(

ln
(
m2

LCO

µ2

))2

− 8656704 ln
(
m2

LCO

µ2

)
− 1752192ζ(3) + 1516143π2

+ 26815536S2 + 2936668
)

g4

24281088π4 +O(g6)

]

× 169
72

g2ξ2(g)m4
LCO . (4.10)

Solving (4.3) as before and discarding the trivial solution
yields the two loop correction to (4.4) for SU(3) Yang-
Mills theory,

0 =
3
13

+
(

99
√

3π + 132 ln
(
m2

LCO

µ2

)
− 734

)
g2

832π2

+

(
1038312

√
3π ln

(
m2

LCO

µ2

)
+ 2174607

√
3πS2

− 4312164
√

3π + 640224
(

ln
(
m2

LCO

µ2

))2

− 8016480 ln
(
m2

LCO

µ2

)
− 1752192ζ(3) + 1516143π2

+ 26815536S2 − 1391684

)
g4

12140544π4 +O(g6) .

(4.11)

In analysing this along the lines of the one loop case, it
transpires that the resulting two loop correction for the
m2

LCO estimate is not µ independent. Therefore, we choose
to return to the procedure of [8] and select the scale µ2 so
as to remove the logarithms in (4.11). This fixes g(µ) to
a particular numerical value but using it the mass scale is
recovered from the two loop extension of (4.6)

g2(µ)
16π2 =

[
β0 ln

[
µ2

Λ2
MS

]]−1

(4.12)

×

1 − β1

[
β2

0 ln

[
µ2

Λ2
MS

]]−1

ln

[
ln

[
µ2

Λ2
MS

]]


where

β1 =
34
3
C2

A − 4CFTFNf − 20
3
CATFNf . (4.13)

We have obtained estimates for both groups SU(2)
and SU(3) for several quark flavours. These are summa-
rized in Tables 1 and 2. Several features emerge. First, for
Yang-Mills interestingly the two loop correction is less than
2% percent of the one loop value which suggests that our
approximation is reliable. Unfortunately when quarks are
included for both colour groups the situation is different
with the two loop estimates being significantly larger than
the one loop ones. Though for SU(3) they are of a similar

Table 1. One and
two loop estimates of
mLCO/Λ

(Nf )

MS
for SU(3)

Nf 1 loop 2 loop
0 2.10 2.13
2 1.74 2.21
3 1.55 2.32

Table 2. One and
two loop estimates of
mLCO/Λ

(Nf )

MS
for SU(2)

Nf 1 loop 2 loop
0 2.10 2.13
2 1.54 2.29
3 1.24 2.58
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size as the Yang-Mills value. Given the stability of the two
loop results for Nf = 0 compared with Nf �= 0, it would
suggest that the analysis when quarks are present is lacking
some stabilising ingredient. One possibility is that for full
QCD one actually requires quark masses to be included.

5 Discussion

We have produced estimates for the gluon pole mass in
QCD from the local composite operator method which
systematically introduces an extra scalar field coupled to
the gluon mass operator into the Lagrangian. The one
loop renormalization scale independent estimate of [25] is
stable to the two loop corrections for Yang-Mills theory but
in the presence of quarks the estimates were significantly
different. To improve the convergence for this case one
could introduce masses for the quarks either by hand or
by extending the LCO formalism to include the analogous
mass operator vacuum expectation value 〈ψ̄ψ〉 which is
clearly beyond the scope of the present article. Moreover, if
one accepts that a gluonmass emerges dynamically inQCD,
one would then have to include gluon mass corrections in
the estimates of the pole mass of the quarks. Although
we have followed one procedure to deduce estimates for
the gluon pole mass, other methods are possible. Indeed
knowledge of the full momentum dependence of the gluon
2-point function would allow for the possibility of repeating
the two loop analysis which was carried out in [27] using
Grunberg’s method of effective charges, [38, 39].

Acknowledgements. The author thanks R.E. Browne for useful
discussions and Prof. M.Yu. Kalmykov for advice and discus-
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